Preliminary communication

IR evidence for tricarbonyl(dinitrogen) nickel, Ni(CO)₃(N₂), in a nitrogen matrix at 20 K

A.J. REST

Department of Physical Chemistry, University Chemical Laboratory, Lensfield Road, Cambridge (Great Britain)

(Received April 25th, 1972; in revised form May 24th, 1972)

Structural studies¹ of dinitrogen complexes have shown that two types of bonding can occur, either terminal, *i.e.* $M-N \equiv N$, or linearly bridging two metals, *i.e.*

 $M-N\equiv N-M'$. Kinetic studies² have inferred the existence of a $M \leftarrow \prod_{N=1}^{N} N$ species as a transition

state or short living intermediate. The matrix isolation technique³ has provided spectroscopic evidence for a variety of unstable species and here I present IR evidence for the formation of Ni(CO)₃(N₂), an example of a new kind of complex, in a nitrogen matrix.

Photolysis of a matrix mixture of Ni(CO)₄ and ${}^{14}N_2$ (1/5000) at 20 K with a medium pressure Hg arc and Cl₂ gas filter produced new IR bands at 2027, 2031, 2098, 2139 and 2266 cm⁻¹. The band at 2139 cm⁻¹ corresponds to CO liberated during photolysis⁴. The other bands, which increased and decreased in intensity, which depended on the photolytic source used, with constant relative intensities, can be assigned to a single molecular species Ia. Photolysis of Ni(CO)₄ in a ${}^{15}N_2$ matrix under similar conditions gave new IR bands at 2027, 2031, 2096 and 2193 cm⁻¹ (Ib) and a band due to CO.

The shift of the 2266 cm⁻¹ band in a ¹⁴N₂ matrix to 2193 cm⁻¹ for a ¹⁵N₂ matrix indicates that this band is a NN stretching band. The bands in the 2000–2100 cm⁻¹ region are typical of terminal CO bands and the small separation between the bands at 2030 cm⁻¹ suggests that they probably arise from a single vibrational mode. Similar splittings have been observed for a number of molecules, *e.g.* Ni(CO)₄ and Co(CO)₃(NO) (Table 1) and may be accounted for by a matrix effect or a slight distortion of the molecule⁵.

The NN and two terminal CO vibrations suggest three possibilities for I: (i) Ni_x-(CO)_y(N₂)_z with x > 1; (ii) Ni(CO)₂(N₂); (iii) Ni(CO)_{4-x}(N₂)_x with x = 1 or 2. The polynuclear complex (i) can be eliminated because the number and relative intensities of the bands did not change when the ratio of Ni(CO)₄/N₂ was varied from 1/2000 to

J. Organometal. Chem., 40 (1972)

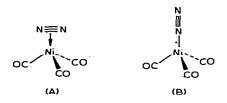

 $1/15000^{\bigstar}$. The coordinatively unsaturated species Ni(CO)₂(N₂) (ii) and the bis-dinitrogen complex Ni(CO)₂(N₂)₂ (iii) are unlikely because of (a) the disparity in expected relative intensities of the CO vibrations, 3/1 and 2/1 respectively from isostructural model compounds Co(CO)₂(NO) and Fe(CO)₂(NO)₂, with the observed value 8/1, and (b) other species should also have been observed with different photolysis sources^{4a} or when the matrix was annealed^{4b}. The IR data are consistent with Ni(CO)₃(N₂) and show a strong similarity to Co(CO)₃(NO) both in band relative intensities and in the splitting of the more intense CO vibration (Table 1).

TABLE 1

Compound		ν(CO)	ν(NN)
Ni(CO) ₄	$\begin{array}{c} 2047\\ 2052 \end{array} \right\} T_2$		
$Ni(CO)_3({}^{14}N_2)$ (Ia) ^a	$2027 \\ 2031 \end{bmatrix} E(16)$	2098 A, (2)	2266 A ₁ (1)
Ni(CO) ₃ (¹⁵ N ₂) (Ib)	$2027 \\ 2031 \} E$	2096 A ₁	2193 A ₁
Co(CO) ₃ (NO) ^a	$2036 \\ 2041 \end{bmatrix} E(7)$	2106 A ₁ (1)	

IR BAND POSITIONS (cm⁻¹) IN N₂ MATRICES AT 20 K

^aApproximate relative intensities.

The structure A seems a possibility because of the high value of $\nu(NN)$ (only 65 cm⁻¹ below free N₂) and the three terminal CO bands which would be consistent with the C_s symmetry of A. The relative intensity of the NN vibration (Table 1), however, is more consistent with a terminal NN vibration as for B than the extremely weak absorption expected for A¹, while the CO band pattern shows a strong similarity to Co(CO)₃(NO) which is isostructural ($C_{3\nu}$) with B. It seems probable, therefore, that Ni(CO)₃(N₂) has structure B.

Preliminary studies⁶ of the photolysis of other transition metal carbonyls and their derivatives $M(CO)_a X_b$ (X = H, CH₃, Br, NO, π -C₅H₅) in N₂ matrices indicate that replacement of CO by N₂ is a general process and that the compounds represent a new type of dinitrogen complex.

^{*}At the highest dilution aggregates of Ni(CO)₄ are unlikely to be formed on deposition of the sample and the high degree of isolation prevents aggregation during photolysis.

J. Organometal. Chem., 40 (1972)

•

ACKNOWLEDGEMENTS

I thank the Royal Society for a Pickering Research Fellowship and Professor J.J. Turner for helpful discussions.

REFERENCES -

- 1 Yu.G. Borod'ko and A.E. Shilov, Russ. Chem. Rev., 38 (1969) 355.
- 2 J.N. Amor and H. Taube, J. Amer. Chem. Soc., 92 (1970) 2562.
- 3 J.S. Ogden and J.J. Turner, Chem. Brit., 7 (1971) 186.
- 4 (a) A.J. Rest and J.J. Turner, *Chem. Commun.*, (1969) 375; (b) A.J. Rest and J.J. Turner, *Chem. Commun.*, (1969) 1026.
- 5 M.A. Graham, M. Poliakoff and J.J. Turner, J. Chem. Soc. (A), (1971) 2939.
- 6 O. Crichton and A.J. Rest, to be published.

J. Organometal. Chem., 40 (1972)